°C; ¹H NMR 7.96 (2 H, dd, aromatic in positions 3 and 5); 7.01 (2 H, dd, aromatic in positions 2 and 6), 6.77 (2 H, s, aromatic in positions 2' and 6'), 3.59 (2 H, br s, exchangeable with D₂O, NH₂), 2.59 (3 H, s, COCH₃), 2.19 (6 H, s, 2 CH₃); IR $\nu_{\rm NH_2}$ 3472 and 3370, $\nu_{\rm C=O}$ 1670, $\nu_{\rm =C=O}$ 1230. Alkaline extracts were acidified with concentrated HCl solution to give 3-(4-amino-3,5-di methylphenyl)-4-hydroxyacetophenone (6), which was purified by crystallization from *i*-PrOH: mp 170°C; ¹H NMR 7.91 (2 H, m, aromatic in positions 2 and 4), 7.1 (3 H, m, aromatic in positions 5, 2', and 6'), 3.92 (2 H, br s, exchangeable with D₂O, NH₂), 2.57 (3 H, s, COCH₃), 2.31 (6 H, s, 2 CH₃).

3,5-Dimethylphenylhydrazone of 3,5-Dimethyl-4hydroxyacetophenone (7). A solution of (3,5-dimethylphenyl)hydrazine¹⁰ (4.0 g) and 3,5-dimethyl-4-hydroxyacetophenone⁶ (4.25 g) in EtOH (100 mL) was refluxed for 2 h in the presence of a trace of AcOH. The solvent was distilled, the solid residue dissolved in hot benzene (10 mL), and the resulting solution diluted with hexane (15 mL) to precipitate hydrazone 7: mp 122 °C; 4.0 g (yield 52%).

Reaction of Hydrazone 7 with PPA. Hydrazone 7 (4.0 g) was added in portions with stirring to PPA (40 g) preheated at 80 °C in a oil bath. The reaction was exothermic. The temperature was then increased to 120 °C and kept there for 30 min. The mixture was poured into H₂O and the pH adjusted to 8 with 26% aqueous NH₃ solution. An oily product separated which was extracted with ether. The organic extract was dried (K₂CO₃) and the solvent removed to afford a residue which was diluted with an equal amount of hexane. 4-Acetyl-4'-amino-2,6,2',6'-tetramethyldiphenyl ether (9) separated as yellow crystals: mp 121 °C (0.7 g); ¹H NMR 7.75 (2 H, s, aromatic in positions 3 and 5), 6.45 (2 H, s, aromatic in positions 3' and 5'), 3.48 (2 H, br s, exchangeable with D₂O, NH₂), 2.58 (3 H, s, COCH₃), 2.12 and 2.0 (2 × 6 H, 2 s, 4 CH₃); IR ν_{NH_2} 3460 and 3360, $\nu_{\text{C--O}}$ 1670, $\nu_{\text{--C}}$ 1210.

IR $\nu_{\rm NH_3}$ 3460 and 3360, $\nu_{\rm C=0}$ 1670, $\nu_{\rm =C=0}$ 1210. 2,6-Dimethylphenylhydrazone of 3,5-Dimethyl-4hydroxybenzophenone (8). A solution of 3,5-dimethyl-4hydroxybenzophenone¹¹ (12.2 g), (2,6-dimethylphenyl)hydrazine⁷ (7.8 g), and AcOH (0.5 mL) in EtOH (50 mL) was refluxed for 4 h. The solvent was evaporated and the oily residue (18.6 g) chromatographed on a silica gel column (100 g, eluent CHCl₃). The first product eluted was hydrazone 8 as an orange viscous oil (9.2 g) which was used for the reaction with PPA without further purification due to its low stability. **Reaction of Hydrazone 8 with PPA.** Hydrazone 8 (9.0 g) was added to PPA (100 g) preheated at 100 °C in a oil bath with stirring. After 1 h of additional heating, the mixture was poured into H_2O , and the crude gummy solid which separated was treated with diluted aqueous NH₃ solution and extracted with Et₂O. Removal of the solvent left an oily residue (1.9 g) which was chromatographed on a silica gel column (40 g, eluent CHCl₃). The main product of the reaction, 4-amino-4'-benzoyl-3,5,2',6'-tetra-methyldiphenyl ether (10), was collected after elution of a few minor fractions: mp 120 °C; ¹H NMR 7.8 (2 H, m, aromatic in position of the C₆H₅CO group), 7.6 (5 H, m, aromatic in positions 3' and 5' and remaining aromatic of the C₆H₅CO group), 6.40 (2 H, s, aromatic in positions 2 and 6), 3.34 (2 H, br s, exchangeable with D₂O, NH₂), 2.16 and 2.13 (2 × 6 H, 2 s, 4 CH₃); IR ν_{NHe} 3480 and 3350 $\nu_{C=0}$ 1650, $\nu_{=C=0}$ 1215.

IR $\nu_{\rm NH_2}$ 3480 and 3350 $\nu_{\rm C=0}$ 1650, $\nu_{\rm =C=0}$ 1215. **2,6-Dimethylphenylhydrazone of 4-Hydroxybenzophenone** (11). A mixture of 4-hydroxybenzophenone⁹ (16.6 g) and (2,6dimethylphenyl)hydrazine⁷ (11.4 g) was heated at 120 °C on an oil bath for 1 h and then cooled and dissolved in benzene (5 mL). The solution was chromatographed through a silica gel column (250 g, eluent benzene) to remove tarry byproducts. Hydrazone 11 was rapidly eluted and purified by concentration of its benzene solution and dilution of the residue with cyclohexane: mp 141 °C; yield 6.0 g.

Reaction of Hydrazone 11 with PPA. Hydrazone 11 (6 g) was added to PPA (70 g) preheated at 80 °C with vigorous stirring. The reaction was slightly exothermic and was completed by heating the mixture at 120 °C for 1 h. The fluid mass was poured into H_2O to give a solid phosphoric acid salt, which was filtered and dissolved in a 10% NaOH solution. Impurities were removed by filtration, and the clear solution was acidified with AcOH. A solid product separated which was extracted with ether and, after the usual treatment, gave 3-(4-amino-3,5-dimethylphenyl)-4-hydroxybenzophenone (12): yield 1.2 g; mp 162 °C (*i*-PrOH). More 12 was obtained from the phosphoric aqueous solution: ¹H NMR 7.8 (7 H, m, aromatic in positions 2' and 4' and C₆H₅CO), 7.25 (2 H, s, aromatic in positions 2 and 6), 7.17 (1 H, d, aromatic in position 5'), 3.63 (2 H, br s, exchangeable with D₂O, NH₂), 2.23 (6 H, s, 2 CH₃).

Registry No. 1, 75475-99-9; 2, 75476-00-5; 3, 75476-01-6; 4, 75476-02-7; 5, 75476-03-8; 6, 75476-04-9; 7, 75476-05-0; 8, 75476-06-1; 9, 75476-07-2; 10, 75476-08-3; 11, 75476-09-4; 12, 75476-10-7; 3,5-dimethyl-4-hydroxyacetophenone, 5325-04-2; (2,6-dimethylphenyl)-hydrazine, 603-77-0; 2,6-dimethyl-4-fluoronitrobenzene, 315-12-8; 3,5-dimethylfluorobenzene, 461-97-2; 4-hydroxyacetophenone, 99-93-4; (3,5-dimethylphenyl)hydrazine, 39943-61-8; 3,5-dimethyl-4-hydroxybenzophenone, 5336-56-1; 4-hydroxybenzophenone, 1137-42-4.

α -Silicon- and α -Alkynyl-Substituted Vinyl Cations

Melvyn D. Schiavelli,* Dorothy M. Jung, and Anne Keller Vaden

Chemistry Department, College of William and Mary, Williamsburg, Virginia 23185

Peter J. Stang,* Thomas E. Fisk, and David S. Morrison

Chemistry Department, The University of Utah, Salt Lake City, Utah 84112

Received July 8, 1980

The solvolytic reactivity of a number of silicon- and alkynyl-substituted vinyl triflates was investigated in aqueous ethanol. Activation parameters and solvent m values were determined for all substrates. Relative rate data show that the Me₃Si group is accelerating and hence stabilizing relative to hydrogen but destabilizing relative to a t-Bu group. The α -ethynyl substituent causes a rate decrease compared to a methyl group despite its π -donating resonance ability. These results are discussed.

Diverse evidence suggests a dichotomous donor-acceptor behavior for trialkylsilyl groups.^{1a} It is well established that an α -(CH₃)₃Si group imparts considerable stability to a carbanion.^{1b} The effect of silicon substitution on the

⁽¹⁰⁾ H. K. Snyder, H. R. Beilfuss, and J. K. Williams, J. Am. Chem. Soc., 75, 1873 (1953).
(11) K. von Auwers and E. Janssen, Justus Liebigs Ann. Chem., 483,

⁽¹¹⁾ K. von Auwers and E. Janssen, Justus Liebigs Ann. Chem., 483, 44 (1930).

stability of carbenium ions is less investigated and understood although a number of studies² indicate that β silicon substitution provides stabilization and α -substitution destabilization of these electron-deficient intermediates.

Recent interest in vinyl cations³ prompted us to study the effect of silicon substitution on such unsaturated cations. To date, indirect evidence via the participation of the (trimethylsilyl)acetylenic group in polyene cyclizations^{4,5} suggests that α -silicon substitution destablizes vinyl cations. We chose to investigate this question by means of direct solvolysis of α -silyl-substituted vinyl triflates.

Similarly, theoretical⁶ as well as experimental⁷ data indicate that the triple bond destabilizes carbonium ions; i.e., propargyl systems react slower than the corresponding *n*-propyl substrates despite the resonance stabilization of the propargyl cation. Recent theoretical studies⁸ indicate that α -alkynyl substitution should destablize vinyl cations as well. Preliminary data of Taniguchi⁹ and Hanack¹⁰ and their co-workers give conflicting results with alkynyl substitution being destabilizing in the case of arylvinyl cations and seemingly stabilizing in simple alkylvinyl cations.¹⁰ Therefore we investigated the solvolysis of several α -alkynyl-substituted vinyl triflates along with appropriate model compounds.

Results and Discussion

 α -Silylvinyl triflates 2 were prepared from the corresponding silyl ketones 1 as previously reported.¹¹ Similarly (trimethylsilyl)alkynylvinyl triflates 4 were prepared from the corresponding ketones 3 as previously described.¹² Model compounds 6 were prepared by an analogous procedure from the appropriate ketones 5. Finally, α -ethynylvinyl triflates 7 were prepared from the silated precursors 4 via desilylation with KF in methanol as previously reported.¹²

Rates of solvolyses of vinyl triflates 2, 4, 6, and 7 were measured in duplicate conductometrically in unbuffered aqueous ethanol. Excellent first-order rates were obtained in all instances to better than 95% reaction; the data together with activation parameters and solvent m values

- (5) Despo, A. D.; Chiu, S. K.; Flood, T.; Peterson, P. E. J. Am. Chem. Soc. 1980, 102, 5120-22. Kozar, L. G.; Clark, R. D.; Heathcock, C. H. J. Org. Chem. 1977, 42, 1386-89.
- (6) Radom, L.; Hariharan, P. C.; Pople, J. A.; Schleyer, P. v. R. J. Am. Chem. Soc. 1976, 98, 10–14.
- (7) Streitwieser, A., Jr., "Solvolytic Displacement Reactions"; McGraw-Hill: New York, 1962.
- (8) Apeloig, Y.; Schleyer, P. v. R.; Pople, J. A. J. Org. Chem. 1977, 42, 3004-3010.

are summarized in Table I. The solvent m values, activation parameters, and first-order rate constants reported in Table I with the exception of 2a all are consistent with the direct solvolytic generation of the respective inter-mediate vinyl cation.³ It is well-known that m values for triflate solvolysis for both alkyl¹³ and vinyl³ substrates tend to be low, in the 0.40-0.80 range, a phenomenon ascribed to the decreased solvation requirements of the triflate anion.¹³ This novel suggestion of Creary's is supported by the decrease in solvent m value from 1.03 to 0.91 in the solvolysis of adamantyl bromide 8a compared to the to-

sylate 8b and a further decrease to m = 0.60 for the triflate 8c in line with the increasing leaving abilities of these groups.¹³ The unusually fast rate of reaction as well as the very low solvent m value of only 0.28 for 2a strongly suggests a different mode of reaction for this simple silvlvinyl triflate, most likely an E2-type elimination with solvent acting as a base. Hence the faster reaction of the silvl system 2a compared to the model compound 10 may not be a reliable indicator of the true effect of silicon substitution on vinyl cation formation.

The effect of silvl as well as α -alkynyl substitution is best discussed by means of the relative rates summarized in Tables II and III. It is evident from the data in Table II that relative to hydrogen (entries 5 and 6) as well as methyl (entries 1 and 3) a trimethylsilyl group accelerates the rate of reaction of vinyl triflates and hence seems to stabilize the intermediate vinyl cations. This suggests that relative to hydrogen the Me₃Si group is electron donating, in accord with the data on the gas-phase basicities of silylamines^{1a} as well as the theoretical calculations of Apeloig, Schleyer, and Pople.¹⁴ However, if the tert-butyl group is taken as a model a different conclusion emerges. As entry 4 of Table II suggests $[(CH_3)_2C=C(OTf)-t-Bu$

^{(1) (}a) Shea, K. J.; Gobeille, R.; Bramblett, J.; Thompson, E. J. Am. Chem. Soc. 1978, 100, 1611-13 and references there in. (b) Cook, M. A.; Eaborn, C.; Jukes, A. E.; Walton, D. R. M. J. Organomet. Chem. 1970, 24, 529.

⁽²⁾ Eaborn, C.; Feichtmayr, F.; Horn, M.; Murrell, J. N. J. Organomet. Chem. 1974, 77, 39–43. Traylor, T. G.; Hanstein, W.; Berwin, H. J.; Clinton, N. A.; Brown, R. S. J. Am. Chem. Soc. 1971, 93, 5715–25. Cook, M. A.; Eaborn, C.; Walton, D. R. M. J. Organomet. Chem. 1971, 29, 389-96. Jarvie, A. W. P. Organomet. Chem. Rev., Sect. A. 1970, 6, 153-207.

⁽³⁾ Stang, P. J.; Rappoport, A.; Hanack, M.; Subramanian, L. R.
"Vinyl Cations"; Academic Press: New York, 1979.
(4) Schmid, R.; Huesmann, P. L.; Johnson, W. S. J. Am. Chem. Soc.
1980, 102, 5122-23. Johnson, W. S.; Yarnell, T. M.; Myers, R. F.; Morton, D. R.; Boots, S. G. J. Org. Chem. 1980, 45, 1254-59. Johnson, W. S.;
Yarnell, T. M.; Myers, R. F.; Morton, D. R. Tetrahedron Lett. 1978, 5540-59. 2549-52.

⁽⁹⁾ Kobayashi, S.; Sonoda, T.; Taniguchi, H. Chem. Lett. 1977, 163-67. Kobayashi, S.; Nishi, T.; Koyama, I.; Taniguchi, H. J. Chem. Soc., Chem. Commun. 1980, 103-05.

⁽¹⁰⁾ Hassdenteufel, J. R.; Hanack, M. Tetrahedron Lett. 1980, 503-506.

 ⁽¹¹⁾ Stang, P. J.; Fox, D. P. J. Org. Chem. 1977, 42, 1667-69.
 (12) Stang, P. J.; Fisk, T. E. Synthesis 1979, 438-40.

⁽¹³⁾ Creary, X. J. Am. Chem. Soc. 1976, 98, 6608-13.

⁽¹⁴⁾ Apeloig, Y.; Schleyer, P. v. R.; Pople, J. A. J. Am. Chem. Soc. 1977, 99, 1291-96.

Table I.	Rates of Solvolyses,	Solvent m Va	lues, and Activation	Parameters for S	silyl- and Alk	ynylvinyl Triflates
----------	----------------------	--------------	----------------------	------------------	----------------	---------------------

compd	temp, °C	$solvent^a$	k, s ⁻¹ ^b	m	$\Delta H^{\ddagger},$ kcal/mol	Δ <i>S</i> [‡] , eι (25 °C)
$H_2C=C(OTf)SiMe_1$	25.0	50E	$1.64 \times 10^{-4} c$		·····	
2a 2	35.24 ± 0.01	80E	$(2.079 \pm 0.033) \times 10^{-4}$	0.28	23.2	-0.2
	35.24 ± 0.01	90E	$(1.275 \pm 0.004) \times 10^{-4}$			
	44.94 ± 0.01	80E	$(6.79 \pm 0.15) \times 10^{-4}$			
(CH.)C=C(OTf)SiMe.	25.0	50E	6.34×10^{-5} c			
2b	35.28 ± 0.01	70E	$(1.007 \pm 0.023) \times 10^{-4}$	0.46	28.3	15.2
	35.28 ± 0.01	80E	$(5.33 \pm 0.018) \times 10^{-5}$			
	44.96 ± 0.01	70E	$(4.674 \pm 0.044) \times 10^{-4}$			
H_C=C(OTf)C=CSiMe	25.0	50E	1.53×10^{-6}			
4a	65.09 ± 0.03	50E	$(2.821 \pm 0.005) \times 10^{-4}$	0.55	25.6	-0.6
	65.09 ± 0.03	60E	$(1.436 \pm 0.002) \times 10^{-4}$	0100	2010	
	75.13 ± 0.01	70E	$(4.404 \pm 0.092) \times 10^{-4}$			
(CH_) C=C(OTf)C=CSiMe	25.0	50E	2.82×10^{-7} c			
4h	65.09 ± 0.03	50E	$(6.60 \pm 0.003) \times 10^{-5}$	0.64	26 7	-0.3
30	65.09 ± 0.03	60E	$(3.03 \pm 0.003) \times 10^{-5}$	0.01	20.1	0.0
	75.13 ± 0.04	60E	$(9.00 \pm 0.000) \times 10^{-5}$			
(C, H) C = C(OTf)C = CSiMe	25.0	50E	6.09×10^{-8}			
4c	20.0 75 19 + 0.05	50E	$(4.06 \pm 0.031) \times 10^{-5}$	0 / 9	26.2	4 8
40	75 19 + 0.05	GOE	$(2.00 \pm 0.001) \times 10^{-5}$	0.40	20.2	4.0
	95.15 ± 0.05	60E	$(2.24 \pm 0.001) \times 10^{-5}$			
$\mathbf{U} = \mathbf{C} + $	00.00 ± 0.00	505	$(0.01 \pm 0.052) \times 10$ 7 99 $\times 10^{-5}$			
fi₂C=C(Off)C≅CBu-i	25.0 44.92 ± 0.01	50E 70F	$(9.709 \pm 0.018) \times 10^{-4}$	0.55	927	- 20
oa	44.93 ± 0.01	70E	$(2.702 \pm 0.010) \times 10^{-4}$	0.55	20.1	2.0
	44.93 ± 0.01	SOE	$(1.204 \pm 0.030) \times 10$			
	55.02 ± 0.01	50E	$(4.078 \pm 0.055) \times 10^{-1}$			
$(C\Pi_3)_2 C = C(O\Pi) C = CBu^2$	20.0	JOE	$(5.08 + 0.001) \times 10^{-5}$	0 50	05 7	07
00	44.93 ± 0.01	701	$(0.28 \pm 0.001) \times 10^{-4}$	0.59	20.7	+ 2.1
	55.00 ± 0.02		$(1.080 \pm 0.003) \times 10^{-1}$			
	55.00 ± 0.02	50E	$(8.43 \pm 0.005) \times 10^{-8}$			
	25.0	506	4.99 X 10 ° °	0.50	04.0	0.0
7a	75.13 ± 0.04	DUL	$(2.37 \pm 0.007) \times 10^{-5}$	0.52	24.8	- 0.0
	75.13 ± 0.04	60E	$(1.26 \pm 0.001) \times 10^{-5}$			
	85.65 ± 0.03	50E	$(6.62 \pm 0.007) \times 10^{-3}$			
$(CH_3)_2 C = C(OIT) C \equiv CH$	25.0	50E	4.63 × 10 × 10 ×	0 5 4	00 F	0 5
70	75.13 ± 0.01	50E	$(5.46 \pm 0.02) \times 10^{\circ}$	0.54	28.7	-0.5
	85.65 ± 0.03	50E	$(1.78 \pm 0.003) \times 10^{-3}$			
	85.65 ± 0.03	60E	$(9.22 \pm 0.002) \times 10^{-6}$			
$H_2C = C(OTf)CH_3^a$	25.0	50E	7.14×10^{-7}			
9	75.0	50E	3.31×10^{-4}		24.7	-3.7
	50.2	50E	1.95×10^{-3}			
$H_2C=C(OTT)Bu-t^a$	25.0	50E	2.65×10^{-6}			
10	75.0	50E	8.78×10^{-4}		23.3	-5.7
	50.4	50E	6.03×10^{-5}			
$(CH_3)_2 C = C(OTf) CH_3^a$	25.0	50E	5.35×10^{-7}			
11	100.0	80E	3.33×10^{-4}	0.61	25.5	-3.4
	100.0	60E	1.64×10^{-3}			
	100.0	50E	2.82×10^{-3}			
	75.0	80E	$2.70 imes 10^{-5}$			
	75.0	60E	1.31×10^{-4}			
	75.0	50E	2.94×10^{-4}			
$(CH_3)_2 C = C(OTf) Pr - i^d$	25.0	$50\mathbf{E}$	8.51×10^{-5}			

^a Aqueous ethanol. ^b Average of duplicate runs. ^c Extrapolated. ^d Data from: Summerville, R. H., et al. J. Am. Chem. Soc. 1974, 96, 1100-1110.

entry	compd	$10^{5}k_{1}, s^{-1}$	compd	$10^{5}k_{2}, s^{-1}$	k_{1}/k_{2}
1	CH ₂ =C(OTf)SiMe ₃	16.4	$CH_2 = C(OTf)CH_3$	0.0714	229
2	2a 2a	16.4	$CH_2 = C(OTf)t$ -Bu	0.265	62
3	(CH ₃) ₂ C=C(OTf)SiMe ₃ 2b	6.34	(CH ₃) ₂ C=C(OTf)CH ₃ 11	0.0535	118
4	2b	6.34	$(CH_3)_2C=C(OTf)i$ -Pr 12	8.51	0.75
5	CH ₂ =C(OTf)C≡CSiMe ₃ 4a	0.153	CH ₂ =C(OTf)C=CH 7a	4.99×10^{-3}	31
6	$(CH_3)_2C=C(OTf)C\equiv CSiMe_3$ 4b	0.0282	$(CH_3)_2C=C(OTf)C\equiv CH$ 7b	4.63×10^{-4}	61
7	4 a	0.153	$CH_2 = C(OTf)C = CBu - t$ 6a	7.83	0.019
8	4b	0.0282	$(CH_3)_2C=C(OTf)C\equiv CBu-t$ 6b	1.37	0.021

Table III.	Relative	Rates of React i	on of α	Alkynyl Vinyl	Triflates at	25 °C) in 5	0% E	tOF
------------	----------	-------------------------	---------	---------------	--------------	-------	--------	------	-----

entry	compd	$10^6 k_1, s^{-1}$	compd	$10^6 k_2, s^{-1}$	k_{1}/k_{2}
1	CH ₂ =C(OTf)CH ₃ 9	0.714	CH₂=C(OTf)C≡CH 7a	0.0499	14.3
2	$(CH_3)_2C=C(OTf)CH_3$ 11	0.535	(CH ₃) ₂ C=C(OTf)C≡CH 7b	0.00463	115
3	$CH_2 = C(OTf)C \equiv CBu-t$ 6a	78.3	9	0.714	109
4	$(CH_3)_2C=C(OTf)C\equiv CBu-t$ 6b	13.7	11	0.535	25.6

unfortunately cannot be made by any known method hence the *i*-Pr is used instead] and entries 7 and 8 confirm the SiMe₃ group is deactivating compared to *t*-Bu. Since the relative steric factors of the *t*-Bu and the Me₃Si groups, due to the shorter C–C bonds compared to the C–Si bond (1.54 Å vs. 1.88 Å),¹⁵ are presumably minimized in the respective alkynylvinyl substrate, the reactivity ratio of 50 (entries 7 and 8) suggests a destabilizing influence of the Me₃Si group (relative to *t*-Bu) in accord with the indirect data from polyene cyclizations.^{4,5} Hence one may conclude that in a situation of considerable electron demand such as a vinyl cation, unlike in carbenium ions, α -silicon substitution results in stabilization. However, the stabilizing effect of a Me₃Si group is not as effective as that of a *t*-Bu group.

Similarly, it is evident from entries 1 and 2 in Table III that the parent ethynyl group is destabilizing compared to a methyl group. This is in accord with the findings of Hanack¹⁰ as well as the theoretical predictions of Apeloig et al.⁸ and has been correctly ascribed to the greater inductive withdrawing effect of the triple bond compared to its resonance-stabilizing effect.⁸ Indeed in the case of the unsubstituted ethynyl group the extended cumulenyl resonance form 13b of the intermediate vinyl cation 13 (R

= H) would in fact be a "primary" system that would not be expected to be very stable. Further substitution of the triple bond stabilizes form 13b and as expected (entries 3 and 4, Table III) accelerates the rate of reaction compared to a simple methyl group.

Finally, with the exception of silylvinyl triflate 2b no product studies were carried out in these systems as both Taniguchi⁹ and Hanack¹⁰ have already demonstrated that the expected cumulenyl-derived, 13b, products do not survive the reaction conditions and the remaining products are unexceptional. In the case of silylvinyl triflate 2b at 75 °C in 50% EtOH, as anticipated, the only product observed by gas chromatography was the silyl ketone 1b.

In summary, we have shown that silicon substitution on a vinylic substrate stabilizes the intermediate vinyl cation but less effectively than a *t*-Bu group. In contrast the α -ethynyl group destabilizes a vinyl cation just as it does a carbenium ion, despite its π -donating resonance ability.

Experimental Section

Boiling points and melting points are uncorrected. Infrared spectra were recorded on a Beckman IR5A or Acculab 3 spectrophotometer calibrated to the 1601.8-cm⁻¹ line of polystyrene

film. Proton NMR were recored on a Varian EM-360 or EM-390 spectrometer. Preparative GC was done on a Varian-Aerograph 90-P or 920 gas chromatograph. Solvents and reagents were purified and dried by standard procedures immediately prior to use.

Preparation of Vinyl Triflates 2, 4, 6, and 7. Vinyl triflate **2b** was prepared and characterized as previously reported.¹¹ Vinyl triflate **2a** was similarily prepared from known¹⁶ CH₃COSiMe₃. A 0.9-g (7.8 mmol) portion of ketone **1a** gave 0.5 g (52%) of **2a** as pale yellow oil: IR (neat) 1623 (C=C), 1420, 1259, 1220, 1160, 939 (CF₃SO₃), 860 cm⁻¹ (Me₃Si); NMR (CDCl₃) 0.17 (9 H, s, Me₃Si), 5.16 (1 H, d, J = 4.0 Hz), 5.77 ppm (1 H, d, J = 4.0 Hz).

Vinyl triflates 4 and 7 were prepared as previously reported.¹² Vinyl triflates 6a and 6b were prepared in a similar manner as described below.

Preparation of Ketones 5a and 5b. t-BuC=CSiMe₃ was prepared by interaction of t-BuC=CH with *n*-BuLi in THF at -78 °C followed by quenching with Me₃SiCl: bp 76-80 °C (145 torr); IR (neat) 2160 (C=C), 840 cm⁻¹ (Me₃Si). To this acetylene, 4.5 g (29 mmol), in 150 mL of CH₂Cl₂ cooled to 0 °C were added 2.3 g (29 mmol) of acetyl chloride followed by 4.3 g (32 mmol) of AlCl₃. Workup was as previously described,¹² yielding 2.3 g (64%) of ketone **5a**: bp 90–98 °C (120–123 torr); IR (neat) 2230 (C=C), 1680 cm⁻¹ (C=O). Similarly 3.0 g (68%) of ketone **5b** was obtained from 29 mmol of t-BuC=CSiMe₃ interacting with 29 mmol of isobutyryl chloride: bp 115–119 °C (125 torr); IR (neat) 2220 (C=C), 1675 cm⁻¹ (C=O).

Preparation of Vinyl Triflates 6a and 6b. Ketones **5a** (18 mmol) and **5b** (20 mmol), respectively, were each reacted with a 20% excess of triflic anhydride under previously reported conditions¹² to give upon workup **6a** (53%) [IR (neat) 2215 (C=C), 1630 (C=C), 1430, 1220, 1140, 935 cm⁻¹ (CF₃SO₃); NMR (CDCl₃, internal Me₄Si) 1.21 (s, 9 H, *t*-Bu), 5.3 ppm (m, 2 H, C=CH₂)] and **6b** [77%; IR (neat) 2210 (C=C), 1660 (C=C), 1425, 1220, 1150, 950 cm⁻¹ (CF₃SO₃); NMR (CDCl₃, internal Me₄Si) 1.25 (s, 9 H, *t*-Bu), 1.81 (s, 3 H, CH₃), 1.89 ppm (s, 3 H, CH₃)]. Both vinyl triflates **6a** and **6b** are stable at 0 °C for several weeks; however, at room temperature they turn colored and slowly decompose in 2-4 days.

Kinetic and Product Studies. Rate constants were obtained conductimetrically as previously described.¹⁷ Product studies were performed on 0.02 M triflate 2b in 50% ethanol at 75 °C. Gas chromatographic analysis (Se-30, 10 ft \times 0.125 in., 100 °C) of the reaction mixture after 5 half-lives indicated ketone 1b as the sole product by comparison with authentic sample.

Acknowledgment. This research was supported by the donors of the Petroleum Research Fund, administered by the American Chemical Society.

⁽¹⁵⁾ Eaborn, C. "Organosilicon Compounds"; Academic Press: New York, 1960; p 490.

Registry No. 1a, 13411-48-8; **2a**, 75700-31-1; **2b**, 73876-87-6; **4a**, 71451-03-1; **4b**, 71451-04-2; **4c**, 71451-05-3; **5a**, 10564-81-5; **5b**, 18205-46-4; **6a**, 74142-32-8; **6b**, 75700-32-2; 7a, 71451-06-4; **7b**, 71451-07-5; **9**, 24541-32-0; **10**, 27701-32-2; **11**, 28143-80-8; **12**, 52149-35-6; *t*-BuC=CSiMe₃, 14630-42-3.

⁽¹⁶⁾ Brook, A. G.; Duff, J. M.; Jones, P. F.; Davis, N. R. J. Am. Chem. Soc. 1967, 89, 431-34.

⁽¹⁷⁾ Schiavelli, M. D.; Germroth, T. C.; Stubbs, J. W. J. Org. Chem. 1976, 41, 681-85.